124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205 | def VideoEANet(
image_size,
image_patch_size,
frames,
frame_patch_size,
num_classes,
dim,
spatial_depth,
temporal_depth,
heads,
mlp_dim,
pool="cls",
channels=3,
dim_coefficient=4,
projection_dropout=0.0,
attention_dropout=0,
emb_dropout=0.0,
):
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)
assert (
image_height % patch_height == 0 and image_width % patch_width == 0
), "Image dimensions must be divisible by the patch size."
assert (
frames % frame_patch_size == 0
), "Frames must be divisible by the frame patch size"
nf, nh, nw = (
frames // frame_patch_size,
image_height // patch_height,
image_width // patch_width,
)
patch_dim = channels * patch_height * patch_width * frame_patch_size
i_p = layers.Input((frames, image_height, image_width, channels))
tubelets = layers.Reshape(
(frame_patch_size, nf, patch_height, nh, patch_width, nw, channels)
)(i_p)
tubelets = ops.transpose(tubelets, (0, 2, 4, 6, 1, 3, 5, 7))
tubelets = layers.Reshape((nf, nh, nw, -1))(tubelets)
tubelets = layers.Reshape((nf, nh * nw, -1))(tubelets)
tubelets = layers.LayerNormalization()(tubelets)
tubelets = layers.Dense(dim)(tubelets)
tubelets = layers.LayerNormalization()(tubelets)
seq_len, num_frames = ops.shape(tubelets)[2], ops.shape(tubelets)[1]
tubelets = ClassTokenSpatial(
sequence_length=seq_len, output_dim=dim, num_frames=num_frames
)(tubelets)
tubelets = layers.Dropout(emb_dropout)(tubelets)
seq_len = ops.shape(tubelets)[2]
tubelets = ops.reshape(tubelets, (-1, seq_len, dim)) ######### ERRRRRRR
tubelets = Transformer(
dim,
spatial_depth,
heads,
mlp_dim,
dim_coefficient=dim_coefficient,
projection_dropout=projection_dropout,
attention_dropout=attention_dropout,
)(tubelets)
tubelets = ops.reshape(tubelets, (-1, num_frames, seq_len, dim)) ######### ERRRRRRR
if pool == "mean":
tubelets = ops.mean(tubelets, axis=2)
else:
tubelets = tubelets[:, :, -1]
tubelets = ClassTokenTemporal(dim)(tubelets)
tubelets = Transformer(
dim,
temporal_depth,
heads,
mlp_dim,
dim_coefficient=dim_coefficient,
projection_dropout=projection_dropout,
attention_dropout=attention_dropout,
)(tubelets)
if pool == "mean":
tubelets = ops.mean(tubelets, axis=1)
else:
tubelets = tubelets[:, -1]
o_p = layers.Dense(num_classes)(tubelets)
return keras.Model(inputs=i_p, outputs=o_p)
|